

PowerLight Corporation Overview

- PV Sys Manufacturer & Solutions Provider Focus: Commercial / Industrial / Utility
- Founded '91 in Bay Area, Global Offices
- Partnership Based Business Model
- High internal growth
 - 1) 2x each year since 1997
 - 2) "Inc. 500" last 3 Years
- Profitable since inception
- Grid-Tied Leader; LargestPV module customer in America

Selected PowerLight Thin-Film Projects: 1994 to 2003

600 kW UniSolar Bakersfield, '02

270 kW BP Apollo Dublin, CA, '01/'02

100 kW BP a-Si Raleigh, NC '02

42 kW BP a-Si Cape Charles, VA '98

3 kW APS Folsom, CA '94

Selected PowerLight Crystalline Projects

500 kW FTB: CA '02

500 kW Toyota: CA '03

800 kW S.R. Jail: CA '01

500 kW Mauna Lani, HI '98 -'02

1 MW US Navy: CA '02

500 kW Neutrogena, CA '01

650 kW Janssen, NJ '03

Topic of Day

- ☐ Prof Margolis says we need \$4-\$11B to achieve \$3/W
- Accept it reasonable assumptions, solid methodology
- Soooo ... where do we find \$7.5B, +/-\$3.5B?
- ☐ Alternatively, how to grow demand to lower cost?
- What are implications for R&D priorities?

Federal Support for Energy Sources; 1943-1999, \$B

By Contrast:

Gulf War 1: \$100B

Gulf War 2: \$74-300B

World Trade Ctr: \$110B

Afgan War: \$100B

Homeland Security: \$37B

Source: Renewable Energy Policy Project, Research Report 11, "Federal Energy Subsidies: Not All Technologies Are Created Equal," MRG & Associates, an environmental and economics consulting firm, Madison, WI. July 2000.

Objective Function for Maximum Value

- Tracker: +25% kWh
- PV Roofing
- PV Demand Reduc.

PV Benefits

PV Costs

PV+Efficiency

- 50% Module
- 50% BOS/Engr/Install/O&M

Module costs only 1/4 of Equation!

Flashback: 1994 IEEE Specialists Conference

Tom Dinwoodie PowerLight

Dan Shugar Advanced Photovoltaic Systems

Optimizing Roof-Integrated Photovoltaics: A Case Study of the PowerGuard Roofing Tile

a-Si PowerGuard System

Thin-Film vs Crystalline; Time for a status check

Over the last 10 years:

- 1. Solar grade silicon prices have dropped by 10X
- 2. Thin-film commercialization has slipped
- 3. Crystalline technologies have improved dramatically; sustained progress likely

Selected PV Integration Considerations

- 1. Efficiency (5 to 15 watts / square foot)
- 2. Frame or Frameless (Up to \$20/module)
- 3. Mechanical Size
- 4. Mechanical Strength (tempered vs annealed)
- 5. Operating Voltage & Fusing Requirements
- 6. Color
- 7. Reflectivity
- 8. Fire Rating (Class A, B, or C)
- 9. Size of Project for to Maximize Revenue

Note: The least expensive PV <u>module</u> in \$/watt often does not result in the least expensive PV <u>system</u> in \$/watt

Integration Considerations for PV Modules > 40 watts

		Thin-Film	Crystalline	Approx. Sys. Cost
		(Glass Substrate)	Technologies	Impact to Thin-Film
1	Module Power (to Edge)	4 to 7 W/Ft ²	10 to 15 W/Ft ²	\$0.30/W - \$1.25/W
2	Mechanical Strength	Annealed/ Heat Strengthened	Tempered (5 to 10X stronger)	\$0.06/W - \$0.30/W
3	Lamination QA/QC	Poor	Good	Included in #2
4	Module O.C. Voltage	45V to 100V typ.	20V to 50V typ.	\$0.03/W - \$0.33/W
5	Typical 'String' Power	200W to 750W	1500W to 3000W	Included in #4
6	Stability	Poor	Good	\$0.30/W - \$0.60/W
7	Voltage Isolation	Intermittent	Excellent	Included in #6
8	Module Design Flex.	Poor	Excellent	Not quantified
9	Blocking Diode Req'd	Yes	No	\$0.02/W - \$0.05/W
10	Opaque to UV?	No	Yes	\$0.00/W - \$0.10/W
11	End of Life Recycle?	Some	No	<u>\$0.00/W - \$0.20/W</u>
•	Avg cost impact:	<u>\$1.77/Wp</u>	TOTAL:	\$0.71/W - \$2.83/W

Source: Rick Mitchell, NREL 29th IEEE PVSC

Fig. 2. Non-thin-film PVMaT manufacturing cost/capacit (2001 data using 2001 dollars).

Crystalline Progress Example: Sanyo HIT Technology

- 175W Module: 17% cell/15% module
- 190W Module: 18% cell/16% module
- No L.I.D. (normally ~2.5%) or S.W. Degradation
- Excellent Temp Coeff.
- 200 micron wafer
- Proven in Large Systems
- Substantial New Capacity Planned

Bridging the Gap

Policy

☐ Advocate PV Benefits = Incentives & RPS w/DG

Ex. PV-Now (National Advocacy/lobbying group, SEIA Subcommittee)

Need to Balance R&D investments:

- ☐ Balance PV modules with Systems Technologies
- ☐ Balance *Near-term PV (crystalline)* with *Long-Term PV*
- ☐ Focus on *Benefits* as well as *Cost* and *Performance*

